Welcome to the Beginner's Guide to Aerodynamics
What is aerodynamics? The word comes from two Greek words: aerios, concerning the air, and dynamis, which means force. Aerodynamics is the study of forces and the resulting motion of objects through the air. Judging from the story of Daedalus and Icarus, humans have been interested in aerodynamics and flying for thousands of years, although flying in a heavier-than-air machine has been possible only in the last hundred years. Aerodynamics affects the motion of a large airliner, a model rocket, a beach ball thrown near the shore, or a kite flying high overhead. The curveball thrown by big league baseball pitchers gets its curve from aerodynamics.
At this Web site you can study aerodynamics at your own pace and to your own level of interest. Some of the topics included are: Newton's basic equations of motion; the motion of a free falling object, that neglects the effects of aerodynamics; the terminal velocity of a falling object subject to both weight and air resistance; the three forces (lift, drag, and weight) that act on a glider; and finally, the four forces that act on a powered airplane. Because aerodynamics involves both the motion of the object and the reaction of the air, there are several pages devoted to basic gas properties and how those properties change through the atmosphere.
This site was prepared at NASA Glenn by the Learning Technologies Project (LTP) (http://www.grc.nasa.gov/WWW/K-12) to provide background information on basic aerodynamics as teaching aids for math and science teachers. Some of the slides were prepared to support FoilSim, an interactive educational computer program that allows students to design and test airfoil shapes on a personal computer. Other slides were prepared to support LTP videoconferencing workshops (http://www.grc.nasa.gov/WWW/K-12/CoE/Coemain.html) for teachers and students. And other slides were prepared as part of Power Point Presentations for the Digital Learning Network.
This site has been intentionally organized to mirror the unstructured nature of the world wide web. There are many pages here connected to one another through hyperlinks and you can then navigate through the links based on your own interest and inquiry. There is an index of topics that you can access from any page, so you are never more than two clicks away from any other Web page at this site. However, if you prefer a more structured approach, you can also take one of our Guided Tours through the site. Each tour provides a sequence of pages dealing with some aspect of aerodynamics
What is aerodynamics? The word comes from two Greek words: aerios, concerning the air, and dynamis, which means force. Aerodynamics is the study of forces and the resulting motion of objects through the air. Judging from the story of Daedalus and Icarus, humans have been interested in aerodynamics and flying for thousands of years, although flying in a heavier-than-air machine has been possible only in the last hundred years. Aerodynamics affects the motion of a large airliner, a model rocket, a beach ball thrown near the shore, or a kite flying high overhead. The curveball thrown by big league baseball pitchers gets its curve from aerodynamics.
At this Web site you can study aerodynamics at your own pace and to your own level of interest. Some of the topics included are: Newton's basic equations of motion; the motion of a free falling object, that neglects the effects of aerodynamics; the terminal velocity of a falling object subject to both weight and air resistance; the three forces (lift, drag, and weight) that act on a glider; and finally, the four forces that act on a powered airplane. Because aerodynamics involves both the motion of the object and the reaction of the air, there are several pages devoted to basic gas properties and how those properties change through the atmosphere.
This site was prepared at NASA Glenn by the Learning Technologies Project (LTP) (http://www.grc.nasa.gov/WWW/K-12) to provide background information on basic aerodynamics as teaching aids for math and science teachers. Some of the slides were prepared to support FoilSim, an interactive educational computer program that allows students to design and test airfoil shapes on a personal computer. Other slides were prepared to support LTP videoconferencing workshops (http://www.grc.nasa.gov/WWW/K-12/CoE/Coemain.html) for teachers and students. And other slides were prepared as part of Power Point Presentations for the Digital Learning Network.
This site has been intentionally organized to mirror the unstructured nature of the world wide web. There are many pages here connected to one another through hyperlinks and you can then navigate through the links based on your own interest and inquiry. There is an index of topics that you can access from any page, so you are never more than two clicks away from any other Web page at this site. However, if you prefer a more structured approach, you can also take one of our Guided Tours through the site. Each tour provides a sequence of pages dealing with some aspect of aerodynamics
1 comment:
Good information on Aeronautics
Post a Comment